
 [Ghode, 2(3): March, 2013]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

 Distributed Shared Virtual File System

Dept. of Computer

The shared virtual memory provides a virtual address space that is shared among all processors in a loosely
coupled distributed-memory multiprocessor system. Application programs can us
they do a traditional virtual memory, except, of course, that processes can run on different processors in parallel.
The shared virtual memory not only “pages” data between physical memories and disks, as in a convention
memory system, but it also “pages” data between the physical memories of the individual processors.
The main difficulty in building a shared virtual memory is solving the memory coherence problem A prototype
system called IVY has been implemented on a local area network of Apollo workstations. The experimental results
of nontrivial parallel programs run on the prototype show the viability of a shared virtual memory. The success of
this implementation suggests an operating mode for such
total processing power and memory capabilities in a far more unified way than the traditional “messagepassing”
approach.

Introduction

The benefits of a virtual memory go without
saying; almost every high performance sequential
computer in existence today has one. In fact, it is
hard to believe that loosely coupled multiprocessors
would not also benefit

from virtual memory. One can easil
imagine how virtual memory would be incorporated
into a shared-memory parallel machine because the
memory hierarchy need not be much different from
that of a sequential machine. On a multiprocessor in
which the physical memory is distributed, however,
the implementation is not obvious. Two kinds of
multiple CPU systems exist[11]: multiprocessors and
multicomputers. A multiprocessor is a machine with
multiple CPUs that share a single common virtual
address space. All CPUs can read and write every
location in this address space. Multiprocessors can be
programmed using well-established techniques, but
they are difficult and expensive to build. For this
reason, many multiple CPU systems are simply a
collection of independent CPU-memory pairs,
connected by a communication network. Machines of
this type that do not share primary memory are called
multicomputers. The usual approach to programming
a multicomputer is message passing[11]. The
operating system provides primitives SEND and
RECEIVE in one form or another, and programmers
can use these for interprocess communication. This
makes I/O the central paradigm for multicomputer
software, something that is unfamiliar and unnatural
for many programmers. An alternative approach is to

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Distributed Shared Virtual File System Explained using IVY System
Shilpa D. Ghode

Dept. of Computer Technology KITS, Ramtek, Nagpur, India
shil_ghode@yahoo.co.in

Abstract
The shared virtual memory provides a virtual address space that is shared among all processors in a loosely

memory multiprocessor system. Application programs can use the shared virtual memory just as
they do a traditional virtual memory, except, of course, that processes can run on different processors in parallel.
The shared virtual memory not only “pages” data between physical memories and disks, as in a convention
memory system, but it also “pages” data between the physical memories of the individual processors.
The main difficulty in building a shared virtual memory is solving the memory coherence problem A prototype

implemented on a local area network of Apollo workstations. The experimental results
of nontrivial parallel programs run on the prototype show the viability of a shared virtual memory. The success of
this implementation suggests an operating mode for such architectures in which parallel programs can exploit the
total processing power and memory capabilities in a far more unified way than the traditional “messagepassing”

The benefits of a virtual memory go without
saying; almost every high performance sequential
computer in existence today has one. In fact, it is
hard to believe that loosely coupled multiprocessors

from virtual memory. One can easily
imagine how virtual memory would be incorporated

memory parallel machine because the
memory hierarchy need not be much different from
that of a sequential machine. On a multiprocessor in
which the physical memory is distributed, however,

e implementation is not obvious. Two kinds of
multiple CPU systems exist[11]: multiprocessors and
multicomputers. A multiprocessor is a machine with
multiple CPUs that share a single common virtual
address space. All CPUs can read and write every

in this address space. Multiprocessors can be
established techniques, but

they are difficult and expensive to build. For this
reason, many multiple CPU systems are simply a

memory pairs,
mmunication network. Machines of

this type that do not share primary memory are called
multicomputers. The usual approach to programming
a multicomputer is message passing[11]. The
operating system provides primitives SEND and

r, and programmers
can use these for interprocess communication. This
makes I/O the central paradigm for multicomputer
software, something that is unfamiliar and unnatural
for many programmers. An alternative approach is to

simulate shared memory on mult
the pioneering efforts in this direction was the work
of Li and Hudak [1]. In their system, Ivy, a collection
of workstations on a local area network shared a
single, paged, virtual address space. The pages are
distributed among the workstations. When a CPU
references a page that is not present locally, it gets a
page fault. The page fault handler then determines
which CPU has the needed page and sends it a
request. The CPU replies by sending the page.
Although various optimizations are p
performance of these systems is often inadequate.

Ivy is a multi-user read/write peer
file system. Ivy has no centralized or dedicated
components, and it provides useful integrity
properties without requiring users to fully trust eithe
the underlying peer-to-peer storage system or the
other users of the file system.

An Ivy file system consists solely of a set of
logs, one log per participant. Ivy stores its logs in the
DHash distributed hash table[9]. Each participant
finds data by consulting all logs, but performs
modifications by appending only to its own log. This
arrangement allows Ivy to maintain meta
consistency without locking. Ivy users can choose
which other logs to trust, an appropriate arrangement
in a semi-open peer-to-peer system.

Ivy presents applications with a
conventional file system interface. When the
underlying network is fully connected, Ivy provides
NFS-like semantics[18], such as close

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[464-472]

ENCES & RESEARCH

Explained using IVY System

The shared virtual memory provides a virtual address space that is shared among all processors in a loosely
e the shared virtual memory just as

they do a traditional virtual memory, except, of course, that processes can run on different processors in parallel.
The shared virtual memory not only “pages” data between physical memories and disks, as in a conventional virtual
memory system, but it also “pages” data between the physical memories of the individual processors.
The main difficulty in building a shared virtual memory is solving the memory coherence problem A prototype

implemented on a local area network of Apollo workstations. The experimental results
of nontrivial parallel programs run on the prototype show the viability of a shared virtual memory. The success of

architectures in which parallel programs can exploit the
total processing power and memory capabilities in a far more unified way than the traditional “messagepassing”

simulate shared memory on multicomputers. One of
the pioneering efforts in this direction was the work
of Li and Hudak [1]. In their system, Ivy, a collection
of workstations on a local area network shared a
single, paged, virtual address space. The pages are

stations. When a CPU
references a page that is not present locally, it gets a
page fault. The page fault handler then determines
which CPU has the needed page and sends it a
request. The CPU replies by sending the page.
Although various optimizations are possible, the
performance of these systems is often inadequate.

user read/write peer-to-peer
file system. Ivy has no centralized or dedicated
components, and it provides useful integrity
properties without requiring users to fully trust either

peer storage system or the

An Ivy file system consists solely of a set of
logs, one log per participant. Ivy stores its logs in the
DHash distributed hash table[9]. Each participant

nsulting all logs, but performs
modifications by appending only to its own log. This
arrangement allows Ivy to maintain meta-data
consistency without locking. Ivy users can choose
which other logs to trust, an appropriate arrangement

peer system.
Ivy presents applications with a

conventional file system interface. When the
underlying network is fully connected, Ivy provides

like semantics[18], such as close-to-open

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

consistency. Ivy detects conflicting modifications
made during a partition, and provides relevant
version information to application-specific conflict
revolvers.

Memory Coherence Problem

A memory is coherent if the value returned
by a read operation is always the same as the value
written by the most recent write operation to the same
address. An architecture with one memory access
path should have no coherence problem. A single
access path, however, may not satisfy today’s
demand for high performance. The memory
coherence problem was first encountered when
caches appeared in uniprocessors and has become
more complicated with the introduction of
“multicaches” for shared memories on
multiprocessors The memory coherence problem in a
shared virtual memory system differs, however, from
that in multicache systems. A multicache
multiprocessor usually has a number of processors
sharing a physical memory through their private
caches. Since the size of a cache is relatively small
and the bus connecting it to the shared memory is
relatively fast, a sophisticated coherence protocol is
usually implemented in the multicache hardware such
that the time delay of conflicting writes to a memory
location is small. Shark[19] introduces a novel
cooperative-caching mechanism, in which mutually-
distrustful clients can exploit each others’ file caches
to reduce load on an origin file server. On the other
hand, a shared virtual memory on a loosely coupled
multiprocessor has no physically shared memory, and
the communication cost between processors is
nontrivial. Thus conflicts are not likely to be solved
with negligible delay, and they resemble much more
a “page fault” in a traditional virtual memory system.
The work on updates and transactions in peer-to-peer
systems can be classified based on who is allowed to
modify it, and how conflicting modifications are
resolved [21]. This can be divided into the following
categories:
Single owner/primary copy is a setting in which
each data item that originates from some source peer
p can only be modified by (or through) p — i.e., no
other peers are allowed to directly modify that data.
Owner-resolver protocols [21] allow multiple peers
to modify the data, and they typically rely on the
owner to resolve any conflicts. If resolution is
impossible, they “branch” the data into fully
independent instances. Consensus protocols allow
multiple peers to modify the data, and some set of
nodes works together to determine how to arbitrate
for consistency. Partial divergence schemes handle
conflicts in a way that results in multiple divergent
copies of the data, but they operate at a finer level of

granularity than divergent replica protocols, and they
allow some portions of the data instance to remain
shared even after “branching” two instances. In the
simplest schemes, each data item is owned by a
single source, which may update that data. Many
other nodes may replicate the data but may not
change it (except, perhaps, by going through the
primary copy at the owner). This is sometimes
referred to as the single-writer, multiple readers
problem. In this type of scheme, the owner of the
data uses a timestamp (logical or physical) to
preserve the serial order of updates, or to arbitrate
among different verions of the data. Since there is a
single owner and a single clock, any node can look at
the data and deterministically choose an ordering.
Owner-Resolver: Coda [21] relaxes the single-
owner scheme described above, in allowing data to
be replicated throughout a network, and for changes
to be made to the replicas. Coda’s focus is on
allowing updates in the presence of network partition:
nodes might need to make changes without having
access to the primary copy. Once connectivity is
restored, the newly modified replica must be
reconciled with the original data and any other
changed replicas; Coda does this by sharing and
replaying logs of changes made to the different
replicas. If Coda determines that multiple concurrent
changes were made, then activates an application-
specific conflict resolver that attempts to resolve the
conflicts. In the worst case, the data may need to be
branched.

 There are two design choices that greatly
influence the implementation of a shared virtual
memory: the granularity of the memory units (i.e., the
“page size”) and the strategy for maintaining
coherence.

Distributed File System

A distributed file system is a resource
management component of a distributed operating
system. It implements a common file system that can
be shared by all the autonomous computers in the
system.

The file system is designed to help
programmers manage their local naming
environments and share consistent versions of
collections of software[7]. It names multiple versions
of local and remote files in a hierarchy. Local names
can refer to local files or be attached to remote files.
Remote files also may be referred to directly. Remote
files are immutable and cached on the local disk.
Two important goals of distributed file systems
follow:
 Network teansparency: the primary goal of a
distributed file system is to provide the same
functional capabilities to access files distributed over

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

a network as the file system of a timesharing
mainframe system does to access files residing at one
location. Ideally users do not have to be aware of the
location of files to access them. This property of a
distributed file system is known as network
transparency[16].
 High availability: Another major goal of distributed
file system is to provide high availability. Users
should have the same easy access to files,
irrespective of their physical location. System failures
or regularly scheduled activities such as backups or
maintenance should not result in the availability of
files.
Architecture of Distributed File System

Ideally in a distributed file system, files can
be stored at any machine and the computation can be
performed at any machine. When a machine needs to
access a file stored on a remote machine, the remote
machine performs the necessary file access operation
and returns data if a read operation is performed.
However, for higher performance, several machines,
referred to as file servers [4][7]are dedicated to
storing files and performing storage and retrieval
operations. The rest of the machines in the system
can be used solely for computation purposes. These
machines are referred to as clients [puff][7] and they
access files stored on servers. A configuration of
personal workstations, each with a local disk,
connected to shared file servers by a local area
network can provide a responsive base for software
development by a team of programmers. The
workstations provide each programmer with
dedicated hardware resources that respond quickly to
interactive demands. The file servers provide a way
for the group of programmers to share information A
file system that supports a group of cooperating
programmers has two important jobs to do. First, it
must help each programmer manage a private file
naming environment in which to work. Second, it
must help the group share consistent versions of the
software subsystems being developed in parallel.
CFS[7] addresses these requirements by providing
each workstation with a hierarchical name space that
includes the files on the local disk and on all file
servers. . The local files are private to the
workstation.

The remote files are sharable among all
workstations. The replication control protocol [17]
that guarantees consistency in the face of node and
network failure. To provide strict or sequential
consistency at little cost to exclusive or shared reads.
To realize this goal, we use a primary copy method
with server redirection when concurrent writes occur.
The strategy differs from the usual primary copy
scheme in that it allows late and dynamic binding of

the primary server, chosen at the granularity of a
single file or directory.
IVY: Integrated Shared Virtual Memory At
Yale

Ivy is a multi-user read/write peer-to-peer
file system[1]. Ivy has no centralized or dedicated
components, and it provides useful integrity
properties without requiring users to fully trust either
the underlying peer-to-peer storage system or the
other users of the file system. . Since the first
prototype IVY took its breath into life in 1986[13],
the development of software DSM systems can be
divided into three important phases: ancient history
(1986-1990), renaissance period (1991-1996), and
present day (1997-2000) While designing a peer-to-
peer file system [12] following points should be
considered:
• Peers have direct control of their resources. Each
peer may administer its own storage and file objects
and perform operations on them independently of
their location and usage in the network.
• Peers have control of how their resources are used.
Each peer may authorize specific peers to certain
actions. Also each peer may define its own sharing
policy.
• Peers should be able to allocate and use resources
they do not physically possess. This can be achieved
either by pooling of resources or sharing, as long as
the process complies with the previous requirements.
• All actions should be accountable. Every
transaction in the network should be traceable to a
named peer, resource or combination of two.
• The network’s capacity should grow as more nodes
join it, in typical peer-to-peer fashion. Moreover,
well connected and well resourced nodes should be
exploited when needed and if they allow so.
Moreover, the Grid environment[12] we target has
imposed special requirements, including:
• Shared namespaces: In addition to sharing file
contents, participants should be able to agree on
common collections or clusters [20] of files. This is
traditionally achieved through distributed filesystem
designs where numerous peers agree on a common
namespace of data. We should allow equal
functionality, additionally supporting the adhoc
creation and management of multiple such views.
• Support for multiple storage types: As we presume
cooperation among new and already deployed file
services, we should provide mechanisms for merging
existing data exported via GridFTP, FTP, HTTP, etc.
into the same distributed namespace and allow
seamless access to objects disregarding the transfer
protocol or location.
• Support for special file types: Data contained in
files may have special semantics, and as so require or
support special operations beyond access, move,

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

copy, delete, etc. For example log files may provide
special mechanisms to append entries or files storing
experimental results from scientific measurements
may contain special metadata.

An Ivy file system consists solely of a set of
logs, one log per participant. Ivy stores its logs in the
DHash distributed hash table. Each participant finds
data by consulting all logs, but performs
modifications by appending only to its own log. This
arrangement allows Ivy to maintain meta-data
consistency without locking. Ivy users can choose
which other logs to trust, an appropriate arrangement
in a semi-open peer-to-peer system.

Ivy presents applications with a
conventional file system interface. When the
underlying network is fully connected, Ivy provides
NFS-like semantics[18], such as close-to-open
consistency. Ivy detects conflicting modifications
made during a partition, and provides relevant
version information to application-specific conflict
resolvers. Performance measurements on a wide-area
network show that Ivy is two to three times slower
than NFS.

Ivy presents a single file system image that
appears much like an NFS file system[18]. In
contrast to NFS, Ivy does not require a dedicated
server; instead, it stores all data and meta-data in the
DHash peer-to-peer block storage system. DHash
can distribute and replicate blocks, giving Ivy the
potential to be highly available. One possible
application of Ivy is to support distributed projects
with loosely affiliated participants. , All peer-to-peer
filesystems, except Ivy, manage a single, distributed
namespace[12]. Ivy creates a namespace per user and
addresses issues like shared namespaces (views),
although the corresponding mechanisms are
cumbersome as they depend on the read-only nature
of the underlying DHT[8]

Building a shared read-write peer-to-peer file
system poses a number of challenges.

• First, multiple distributed writers[16] make
maintenance of consistent file system meta-
data difficult.

• Second, unreliable participants make
locking an unattractive approach for
achieving meta-data consistency.

• Third, the participants may not fully trust
each other, or may not trust that the other
participants' machines have not been
compromised by outsiders;

 Thus there should be a way to ignore or un-
do some or all modifications by a participant
revealed to be untrustworthy. Finally, distributing
file-system data over many hosts means that the
system may have to cope with operation while

partitioned, and may have to help applications repair
conflicting updates made during a partition.

Ivy uses logs to solve the problems
described above. Each participant with write access
to a file system maintains a log of changes they have
made to the file system. Participants scan all the logs
(most recent record first) to look up file data and
meta-data. Each participant maintains a private
snapshot to avoid scanning all but the most recent log
entries[9]. The use of per-participant logs, instead of
shared mutable data structures, allows Ivy to avoid
using locks to protect meta-data. Ivy stores its logs in
DHash, so a participant's logs are available even
when the participant is not.

Ivy resists attacks from non-participants, and
from corrupt DHash servers, by cryptographically
verifying the data it retrieves from DHash. An Ivy
user can cope with attacks from other Ivy users by
choosing which other logs to read when looking for
data, and thus which other users to trust. Ignoring a
log that was once trusted might discard useful
information or critical meta-data; Ivy provides tools
to selectively ignore logs and to fix broken meta-data.

Ivy provides NFS-like file system
semantics[18] when the underlying network is fully
connected. For example, Ivy provides close-to-open
consistency. In the case of network partition, DHash
replication may allow participants to modify files in
multiple partitions. Ivy's logs contain version vectors
that allow it to detect conflicting updates after
partitions merge, and to provide version information
to application-specific conflict resolvers.

The Ivy implementation uses a local NFS
loop-back server [18] to provide an ordinary file
system interface. Performance is within a factor of
two to three of NFS. The main performance
bottlenecks are network latency and the cost of
generating digital signatures on data stored in DHash.

Following sections describes a read/write
peer-to-peer storage system; previous peer-to-peer
systems have supported read-only data or data
writeable by a single publisher. It describes how to
design a distributed file system with useful integrity
properties based on a collection of untrusted
components. Finally, it explores the use of distributed
hash tables as a building-block for more sophisticated
systems.
Design

An Ivy file system consists of a set of logs,
one log per participant[9]. A log contains all of one
participant's changes to file system data and meta-
data. Each participant appends only to its own log,
but reads from all logs. Participants store log records
in the DHash distributed hash system, which provides
per-record replication[17] and authentication. Each
participant maintains a mutable DHash record (called

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

a log-head) that points to the participant's most recent
log record. Ivy uses version vectors [9] to impose a
total order on log records when reading from multiple
logs. To avoid the expense of repeatedly reading the
whole log, each participant maintains a private
snapshot summarizing the file system state as of a
recent point in time.

The Ivy implementation acts as a local loop-
back NFS v3 [18] server, in cooperation with a host's
in-kernel NFS client support. Consequently, Ivy
presents file system semantics much like those of an
NFS v3 file server.
DHash

Ivy stores all its data in DHash [8]. DHash is
a distributed peer-to-peer hash table mapping keys to
arbitrary values. DHash stores each key/value pair on
a set of Internet hosts determined by hashing the key.
This paper refers to a DHash key/value pair as a
DHash block. DHash replicates blocks to avoid
losing them if nodes crash.

DHash ensures the integrity of each block
with one of two methods. A content-hash block
requires the block's key to be the SHA-1
cryptographic hash of the block's value; this allows
anyone fetching the block to verify the value by
ensuring that its SHA-1 hash matches the key. A
public-key block requires the block's key to be a
public key, and the value to be signed using the
corresponding private key. DHash refuses to store a
value that does not match the key. Ivy checks the
authenticity of all data it retrieves from DHash. These
checks prevent a malicious or buggy DHash node
from forging data, limiting it to denying the existence
of a block or producing a stale copy of a public-key
block.

Ivy participants communicate only via
DHash storage; they don't communicate directly with
each other except when setting up a new file system.
Ivy uses DHash content-hash blocks to store log
records. Ivy stores the DHash key of a participant's
most recent log record in a DHash block called the
log-head[8]; the log-head is a public-key block, so
that the participant can update its value without
changing its key. Each Ivy participant caches
content-hash blocks locally without fear of using
stale data, since content-hash blocks are immutable.
An Ivy participant does not cache other participants'
log-head blocks, since they may change.

Ivy uses DHash through a simple interface:
put(key, value) and get(key). Ivy assumes that, within
any given network partition, DHash provides write-
read consistency; that is, if put(k, v) completes, a
subsequent get(k) will yield v. The current DHash
implementation does not guarantee write-read
consistency; however, techniques are known which
can provide such a guarantee with high probability

These techniques require that DHash replicate data
and update it carefully, and might significantly
decrease performance. Ivy operates best in a fully
connected network, though it has support for conflict
detection after operating in a partitioned network .

Ivy would in principle work with other
distributed hash tables, such as CFS [7], Ivy [1],
Pond [8], PAST [8], Total Recall [8], and Glacier [8].
All of these systems use consistent hashing (or a
variant) to balance load. Some of these systems are
designed to improve the availability of individual
objects
Log Data Structure

Figure: Example Ivy view and logs. White boxes are
DHash content-hash blocks; gray boxes are public-key

blocks.

An Ivy log consists of a linked list[9] of immutable
log records. Each log record is a DHash content-hash
block. Table 1 describes fields common to all log
records. The prev field contains the previous record's
DHash key. A participant stores the DHash key of its
most recent log record in its log-head block. The log-
head is a public-key block with a fixed DHash key,
which makes it easy for other participants to find.

Table: Fields present in all Ivy log records.

Field Use

prev DHash key of next oldest log record

head DHash key of log-head

seq per-log sequence number

timestamp time at which record was created

version version vector

Conflict Resolution
Ivy provides a tool, lc, that detects conflicting
application updates to files; these may arise from
concurrent writes to the same file by applications that
are in different partitions or which do not perform
appropriate locking. lc scans an Ivy file system's log
for records with concurrent version vectors that affect

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

the same file or directory entry. lc determines the
point in the logs at which the partition must have
occurred, and determines which participants were in
which partition. lc then uses Ivy views to construct
multiple historic views of the file system: one as of
the time of partition, and one for each partition just
before the partition healed. For example,
% ./lc -v /ivy/BXz4+udjsQm4tX63UR9w71SNP0c
before: +WzW8s7fTEt6pehaB7isSfhkc68
partition1: l3qLDU5icVMRrbLvhxuJ1WkNvWs
partition2: JyCKgcsAjZ4uttbbtIX9or+qEXE
% cat /ivy/+WzW8s7fTEt6pehaB7isSfhkc68/file1
original content of file1
% cat
/ivy/l3qLDU5icVMRrbLvhxuJ1WkNvWs/file1
original content of file1, changed
append on first partition
% cat /ivy/JyCKgcsAjZ4uttbbtIX9or+qEXE/file1
original content of file1
append on second partition

In simple cases, a user could simply
examine the versions of the file and merge them by
hand in a text editor. Application-specific resolvers
such as those used by Coda [13] could be used for
more complex cases.
Security and Integrity

Since Ivy is intended to support distributed
users with arms-length trust relationships, it must be
able to recover from malicious participants. The
situation we envision is that a participant's bad
behavior is discovered after the fact. Malicious
behavior is assumed to consist of the participant
using ordinary file system operations to modify or
delete data. One form of malice might be that an
outsider breaks into a legitimate user's computer and
modifies files stored in Ivy.

To cope with a good user turning bad, the
other participants can either form a new view that
excludes the bad participant's log, or form a view that
only includes the log records before a certain point in
time. In either case the resulting file system may be
missing important meta-data. Upon user request,
Ivy's ivycheck tool will detect and fix certain meta-
data inconsistencies. ivycheck inspects an existing
file system, finds missing Link and Inode meta-data,
and creates plausible replacements in a new fix log.
ivycheck can optionally look in the excluded log in
order to find hints about what the missing meta-data
should look like.

Related Work

Ivy was motivated by recent work on peer-
to-peer storage, particularly FreeNet , PAST[19] ,
and CFS [7,13]. The data authentication mechanisms
in these systems limit them to read-only or single-
publisher data, in the sense that only the original
publisher of each piece of data can modify it. CFS
[13]builds a file-system on top of peer-to-peer
storage, using ideas from SFSRO ; however, each file
system is read-only. Ivy's primary contribution
relative to these systems is that it uses peer-to-peer
storage to build a read/write file system that multiple
users can share. The first heterogeneous distributed
shared memory prototype named Mermaid [13] was
designed and implemented by Songnian Zhou et.al.
Mermaid was implemented on the IVY DSM system
and supports C language. The initial DSM algorithm
[20] is a simple sequentially consistent, multiple-
reader/single-writer algorithm, based on that used in
IVY and other systems. The machine pages of the
virtual machine are divided between the nodes, such
that each node manages a subset of the pages. When
a node faults on a page, the manager
node is contacted in the first instance. The manager
node then forwards to the owner (if it is not itself the
owner), and the owner returns the data directly to the
requesting node. The copyset is sent along with the
data, and if necessary the receiving node performs
any invalidations. Version numbers are used to avoid
re-sending unchanged page data.
Log-structured File System
Sprite LFS [15] represents a file system as a log of
operations, along with a snapshot of i-number to i-
node location mappings. LFS uses a single log
managed by a single server in order to to speed up
small write performance. Ivy uses multiple logs to let
multiple participants update the file system without a
central file server or lock server; Ivy does not gain
any performance by use of logs.

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

Distributed Storage Systems
Zebra maintains a per-client log of file

contents, striped across multiple network nodes.
Zebra serializes meta-data operations through a
single meta-data server. Ivy borrows the idea of per-
client logs, but extends them to meta-data as well as
file contents. This allows Ivy to avoid Zebra's single
meta-data server, and thus potentially achieve higher
availability.

xFS [3], the Serverless Network File
System, distributes both data and meta-data across
participating hosts. For every piece of meta-data (e.g.
an i-node) there is a host that is responsible for
serializing updates to that meta-data to maintain
consistency. Ivy avoids any meta-data centralization,
and is therefore more suitable for wide-area use in
which participants cannot be trusted to run reliable
servers. However, Ivy has lower performance than
xFS and adheres less strictly to serial semantics.

Frangipani [19] is a distributed file system
with two layers: a distributed storage service that acts
as a virtual disk and a set of symmetric file servers.
Frangipani maintains fairly conventional on-disk file
system structures, with small, per-server meta-data
logs to improve performance and recoverability.
Frangipani servers use locks to serialize updates to
meta-data. This approach requires reliable and
trustworthy servers.

Harp [19] uses a primary copy scheme to
maintain identical replicas of the entire file system.
Clients send all NFS requests to the current primary
server, which serializes them. A Harp system consists
of a small cluster of well managed servers [20],
probably physically co-located. Ivy does without any
central cluster of dedicated servers--at the expense of
strict serial consistency.

Pastis [22], a completely decentralized
multi-user read-write peer-to-peer _le system. Pastis'
design is simple compared to other existing systems,
as it does not require complex algorithms like
Byzantine-fault tolerant (BFT) replication or a central
administrative authority. It is also highly scalable in
terms of the number of network nodes and users
sharing a given _le or portion of the _le system.
Furthermore, Pastis takes advantage of the fault
tolerance and good locality properties of its
underlying storage layer, the Past DHT.

Keso[13], a distributed and completely
decentralized file system based on the peer-to-peer
overlay network DKS. In the system we looked at
there was three times as much storage space available
on workstations than was stored in the distributed file
system. The main goals for the design of Keso has
been that it should make use of spare resources, avoid
storing unnecessarily redundant data, scale well, be
self-organizing and be a secure file system suitable

for a real world environment. By basing Keso on
peer-to-peer techniques it becomes highly scalable,
fault tolerant and self-organizing. Keso is intended to
run on ordinary workstations and can make use of the
previously unused storage space. Keso also provides
means for access control and data privacy despite
being built on top of untrusted components. The file
system utilizes the fact that a lot of data stored in
traditional file systems is redundant by letting all files
that contains a datablock with the same contents
reference the same datablock in the file system. This
is achieved while still maintaining access control and
data privacy.
Reclaiming Storage

The Elephant file system allows all file
system operations to be undone for a period defined
by the user, after which the change becomes
permanent. While Ivy does not currently reclaim log
storage, perhaps it could adopt Elephant's version
retention policies; the main obstacle is that discarding
log entries would hurt Ivy's ability to recover from
malicious participants. Experience with Venti
suggests that retaining old versions of files
indefinitely may not be too expensive.
Consistency and Conflict Resolution

Coda [13] allows a disconnected client to
modify its own local copy of a file system, which is
merged into the main replica when the client re-
connects. A Coda client keeps a replay log that
records modifications to the client's local copies
while the client is in disconnected mode. When the
client reconnects with the server, Coda propagates
client's changes to the server by replaying the log on
the server. Coda detects changes that conflict with
changes made by other users, and presents the details
of the changes to application-specific conflict
resolvers. Ivy's behavior after a partition heals is
similar to Coda's conflict resolution: Ivy
automatically merges non-conflicting updates in the
logs and lets application-specific tools handle
conflicts.

Ficus [9] is a distributed file system in
which any replica can be updated. Ficus
automatically merges non-conflicting updates from
different replicas, and uses version vectors to detect
conflicting updates and to signal them to the user. Ivy
also faces the problem of conflicting updates
performed in different network partitions, and uses
similar techniques to handle them. However, Ivy's
main focus is connected operation; in this mode it
provides close-to-open consistency, which Ficus does
not, and (in cooperation with DHash) does a better
job of automatically distributing storage over a wide-
area system.

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

Bayou [9] represents changes to a database as a log
of updates. Each update includes an application-
specific merge procedure to resolve conflicts. Each
node maintains a local log of all the updates it knows
about, both its own and those by other nodes. Nodes
operate primarily in a disconnected mode, and merge
logs pairwise when they talk to each other. The log
and the merge procedures allow a Bayou node to re-
build its database after adding updates made in the
past by other nodes. As updates reach a special
primary node, the primary node decides the final and
permanent order of log entries. Ivy differs from
Bayou in a number of ways. Ivy's per-client logs
allow nodes to trust each other less than they have to
in Bayou. Ivy uses a distributed algorithm to order
the logs, which avoids Bayou's potentially unreliable
primary node. Ivy implements a single coherent data
structure (the file system), rather than a database of
independent entries; Ivy must ensure that updates
leave the file system consistent, while Bayou shifts
much of this burden to application-supplied merge
procedures. Ivy's design focuses on providing serial
semantics to connected clients, while Bayou focuses
on managing conflicts caused by updates from
disconnected clients.
Storing Data on Untrusted Servers

BFS [15], OceanStore [15,16], and
Farsite [13] all store data on untrusted servers using
Castro and Liskov's practical Byzantine agreement
algorithm [15]. Multiple clients are allowed to
modify a given data item; they do this by sending
update operations to a small group of servers holding
replicas of the data. These servers agree on which
operations to apply, and in what order, using
Byzantine agreement. The reason Byzantine
agreement is needed is that clients cannot directly
validate the data they fetch from the servers, since the
data may be the result of incremental operations that
no one client is aware of. In contrast, Ivy exposes the
whole operation history to every client. Each Ivy
client signs the head of a Merkle hash-tree [9]of its
log. This allows other clients to verify that the log is
correct when they retrieve it from DHash; thus Ivy
clients do not need to trust the DHash servers to
maintain the correctness or order of the logs. Ivy is
vulnerable to DHash returning stale copies of signed
log-heads; Ivy could detect stale data using
techniques introduced by SUNDR Ivy's use of logs
makes it slow, although this inefficiency is partially
offset by its snapshot mechanism.

TDB, S4, and PFS use logging and (for
TDB and PFS) collision-resistant hashes to allow
modifications by malicious users or corrupted storage
devices to be detected and (with S4) undone; Ivy uses
similar techniques in a distributed file system
context.

Spreitzer et al. suggest ways to use cryptographically
signed log entries to prevent servers from tampering
with client updates or producing inconsistent log
orderings; this is in the context of Bayou-like
systems. Ivy's logs are simpler than Bayou's, since
only one client writes any given log. This allows Ivy
to protect log integrity, despite untrusted DHash
servers, by relatively simple per-client use of
cryptographic hashes and public key signatures.

Conclusion

This seminar report presents Ivy, a multi-
user read/write peer-to-peer file system. Ivy is
suitable for small groups of cooperating participants
who do not have (or do not want) a single central
server. Ivy can operate in a relatively open peer-to-
peer environment because it does not require
participants to trust each other.

An Ivy file system consists solely of a set of
logs, one log per participant. This arrangement avoids
the need for locking to maintain integrity of Ivy
meta-data. Participants periodically take snapshots of
the file system to minimize time spent reading the
logs. Use of per-participant logs allows Ivy users to
choose which other participants to trust.

Due to its decentralized design, Ivy provides
slightly non-traditional file system semantics;
concurrent updates can generate conflicting log
records. Ivy provides several tools to automate
conflict resolution. More work is under way to
improve them.

Also the distributed file system architecture
is explained along with all the features of distributed
file system. The virtual shared memory concept is
also explained.

References
[1] Muthitachareon, R Morris, T. M. Gil,B.

Chen. Ivy: A Read/Write Peer-to-Peer File
System. In Proceding of 5th Symposium on
Operating System Design and
Implementation (OSDI 2002)

[2] Kai li, Paul Hudak. Memory Coherence in
Shared Virtual Memory Systems.

[3] M. Singhal, N. Shivratri. Advanced concepts
in Operating Systems page199-200.

[4] Antti Kantee. Send and Receive of File
System Protocols: Userspace Approch with
puffs. In Helsinki University of Technology.

[5] A. Chazapis, A. Zissimos, N. Koziris. A
peer-to-peer replica management service for
high throughput Grids.

[6] M. Singhal, N. Shivratri. Advanced concepts
in Operating Systems page 248-252.

 [Ghode, 2(3): March, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[464-472]

[7] Michael D. Schroeder, David K. Gifford and
Roger M. Needham Xerox Pals Alto
Research Center : A Caching File System
For a Programmer's Workstation

[8] Jeffrey Pang , Phillip B. Gibbons, Michael
Kaminsky, Srinivasan Seshan, Haifeng
Yu..Carnegie Mellon University ,Intel
Research Pittsburgh National University of
Singapore: Defragmenting DHT-based
Distributed File Systems

[9] Martin Placek And Rajkumar Buyya The
University of Melbourne: A Taxonomy of
Distributed Storage Systems

[10] S. Zhou, T. McInerney, M. Snelgrove, M.
Stumm, D. Wortman. Computer system
research institute, University of Torento:
Shared Virtual Memory: A Simple Model
For Implementing Distributed Applications

[11] Andrew S. Tanenbaum ,Henri E. Bal .Dept.
of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, The
Netherlands, M. Frans Kaashoek,
Laboratory for Computer Science, M.I.T.
Cambridge, MA : Programming a
Distributed System Using Shared Objects.

[12] Antony Chazapis, Georgios Tsoukalas,
Georgios Verigakis, Kornilios Kourtis,
Aristidis Sotiropoulos and Nectarios Koziris
,National Technical University of Athens,
School of Electrical and Computer
Engineering, Computing Systems
Laboratory: Global-scale peer-to-peer file
services with DFS

[13] Weisong Shi, Department of Computer
Science, Courant Institute of Mathematics
Sciences, New York University :
Heterogeneous Distributed Shared Memory
on Wide Area Network.

[14] M. Amnefelt, J. Svenningsson : Keso- A
Scalable, Reliable And Secure Read/Write
Peer-To-Peer File System [2004].

[15] Fabio Picconi, Jean-Michel Busca, Pierre
Sens LIP6, Universit´e Paris 6 - CNRS,
Paris, France INRIA, Rocquencourt, France
: Exploiting Network Locality in a
Decentralized Read-write Peer-to-peer File
System.

[16] Gabriel Antoniu, Luc Bougé, Mathieu Jan ,
Projet Paris— Septembre 2003 : Peer-to-
Peer Distributed Shared Memory?

[17] Chaitanya Vinay Hazarey, CSCI 555 Term
Research Paper, Department of Computer
Science, University of Southern California,
Los Angeles : Unlearning the Traditional
File Systems Model, Applying Peer to Peer
Techniques for Information Management

[18] Jiaying Zhang ,Peter Honeyman CITI
Technical Report 04-01 : Replication
Control in Distributed File Systems

[19] Kevin Fu and M. Frans Kaashoek,
Massachusetts Institute of Technology and
David Mazie`Res, New York University :
Fast and Secure Distributed Read-Only File
System[2002]

[20] Siddhartha Annapureddy, Michael J.
Freedman, David Mazi`eres, New York
University : Shark: Scaling File Servers via
Cooperative Caching

[21] Matthew Chapman and Gernot Heiser, The
University of New South Wales, Sydney,
Australia National ICT Australia, Sydney,
Australia : Implementing Transparent
Shared Memory on Clusters Using Virtual
Machines

[22] Zachary Ives, Computer and Information
Science Department, University of
Pennsylvania Philadelphia, PA 19104-6389:
Updates And Transactions In Peer-To-Peer
Systems

